MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. EN 1.4150 Stainless Steel

711.0 aluminum belongs to the aluminum alloys classification, while EN 1.4150 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is EN 1.4150 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
220
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 7.8
20
Fatigue Strength, MPa 100
270
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 220
730
Tensile Strength: Yield (Proof), MPa 140
430

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 860
490
Thermal Conductivity, W/m-K 160
23
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 7.9
2.8
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1120
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 26
24
Thermal Diffusivity, mm2/s 61
6.2
Thermal Shock Resistance, points 9.3
27

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0.45 to 0.6
Chromium (Cr), % 0
15 to 16.5
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0.7 to 1.4
79 to 82.8
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0
0 to 0.4
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
1.3 to 1.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0