MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. EN 2.4633 Nickel

7116 aluminum belongs to the aluminum alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 7.8
34
Fatigue Strength, MPa 160
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 220
510
Tensile Strength: Ultimate (UTS), MPa 370
760
Tensile Strength: Yield (Proof), MPa 330
310

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 520
1300
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
210
Resilience: Unit (Modulus of Resilience), kJ/m3 790
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 35
26
Strength to Weight: Bending, points 39
23
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 16
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 94.5
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.5 to 1.1
0 to 0.1
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
8.0 to 11
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Nickel (Ni), % 0
58.8 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
0.1 to 0.2
Vanadium (V), % 0 to 0.050
0
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 4.2 to 5.2
0
Zirconium (Zr), % 0
0.010 to 0.1
Residuals, % 0 to 0.15
0