MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. EN 2.4663 Nickel

7116 aluminum belongs to the aluminum alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 7.8
40
Fatigue Strength, MPa 160
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 220
540
Tensile Strength: Ultimate (UTS), MPa 370
780
Tensile Strength: Yield (Proof), MPa 330
310

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 520
1380
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.2
11
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
250
Resilience: Unit (Modulus of Resilience), kJ/m3 790
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 35
25
Strength to Weight: Bending, points 39
22
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 16
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 94.5
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 0.5 to 1.1
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 2.0
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 0
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
0.2 to 0.6
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0