MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. A357.0 Aluminum

Both 712.0 aluminum and A357.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
100
Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 4.5 to 4.7
3.7
Fatigue Strength, MPa 140 to 180
100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 180
240
Tensile Strength: Ultimate (UTS), MPa 250 to 260
350
Tensile Strength: Yield (Proof), MPa 180 to 200
270

Thermal Properties

Latent Heat of Fusion, J/g 380
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 160
160
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
12
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 24 to 25
38
Strength to Weight: Bending, points 30 to 31
43
Thermal Diffusivity, mm2/s 62
68
Thermal Shock Resistance, points 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 94
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 0.5 to 0.65
0.4 to 0.7
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0 to 0.3
6.5 to 7.5
Titanium (Ti), % 0.15 to 0.25
0.040 to 0.2
Zinc (Zn), % 5.0 to 6.5
0 to 0.1
Residuals, % 0 to 0.2
0 to 0.15