MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. 2007 Aluminum

Both 713.0 aluminum and 2007 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 3.9 to 4.3
5.6 to 8.0
Fatigue Strength, MPa 63 to 120
91 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 180
220 to 250
Tensile Strength: Ultimate (UTS), MPa 240 to 260
370 to 420
Tensile Strength: Yield (Proof), MPa 170
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 370
390
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 610
510
Specific Heat Capacity, J/kg-K 860
870
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
47
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 3.1
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
390 to 530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
44
Strength to Weight: Axial, points 22 to 23
33 to 38
Strength to Weight: Bending, points 28 to 29
37 to 40
Thermal Diffusivity, mm2/s 57
48
Thermal Shock Resistance, points 10 to 11
16 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.6 to 92.4
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.35
0 to 0.1
Copper (Cu), % 0.4 to 1.0
3.3 to 4.6
Iron (Fe), % 0 to 1.1
0 to 0.8
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0.2 to 0.5
0.4 to 1.8
Manganese (Mn), % 0 to 0.6
0.5 to 1.0
Nickel (Ni), % 0 to 0.15
0 to 0.2
Silicon (Si), % 0 to 0.25
0 to 0.8
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 7.0 to 8.0
0 to 0.8
Residuals, % 0 to 0.25
0 to 0.3