MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. 2618A Aluminum

Both 713.0 aluminum and 2618A aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 3.9 to 4.3
4.5
Fatigue Strength, MPa 63 to 120
120
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 180
260
Tensile Strength: Ultimate (UTS), MPa 240 to 260
440
Tensile Strength: Yield (Proof), MPa 170
410

Thermal Properties

Latent Heat of Fusion, J/g 370
390
Maximum Temperature: Mechanical, °C 180
230
Melting Completion (Liquidus), °C 630
670
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 860
880
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
37
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 3.1
3.0
Embodied Carbon, kg CO2/kg material 7.8
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
19
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
1180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
47
Strength to Weight: Axial, points 22 to 23
41
Strength to Weight: Bending, points 28 to 29
44
Thermal Diffusivity, mm2/s 57
59
Thermal Shock Resistance, points 10 to 11
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.6 to 92.4
91.5 to 95.2
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 0.4 to 1.0
1.8 to 2.7
Iron (Fe), % 0 to 1.1
0.9 to 1.4
Magnesium (Mg), % 0.2 to 0.5
1.2 to 1.8
Manganese (Mn), % 0 to 0.6
0 to 0.25
Nickel (Ni), % 0 to 0.15
0.8 to 1.4
Silicon (Si), % 0 to 0.25
0.15 to 0.25
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 7.0 to 8.0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.25
0 to 0.15