MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. EN AC-46100 Aluminum

Both 713.0 aluminum and EN AC-46100 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74 to 75
91
Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 3.9 to 4.3
1.0
Fatigue Strength, MPa 63 to 120
110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 240 to 260
270
Tensile Strength: Yield (Proof), MPa 170
160

Thermal Properties

Latent Heat of Fusion, J/g 370
550
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 630
600
Melting Onset (Solidus), °C 610
540
Specific Heat Capacity, J/kg-K 860
890
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
28
Electrical Conductivity: Equal Weight (Specific), % IACS 100
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 7.8
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
170
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
51
Strength to Weight: Axial, points 22 to 23
27
Strength to Weight: Bending, points 28 to 29
34
Thermal Diffusivity, mm2/s 57
44
Thermal Shock Resistance, points 10 to 11
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.6 to 92.4
80.4 to 88.5
Chromium (Cr), % 0 to 0.35
0 to 0.15
Copper (Cu), % 0.4 to 1.0
1.5 to 2.5
Iron (Fe), % 0 to 1.1
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.2 to 0.5
0 to 0.3
Manganese (Mn), % 0 to 0.6
0 to 0.55
Nickel (Ni), % 0 to 0.15
0 to 0.45
Silicon (Si), % 0 to 0.25
10 to 12
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 7.0 to 8.0
0 to 1.7
Residuals, % 0 to 0.25
0 to 0.25