MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. SAE-AISI 4320 Steel

713.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4320 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is SAE-AISI 4320 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74 to 75
160 to 240
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.9 to 4.3
21 to 29
Fatigue Strength, MPa 63 to 120
320
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 180
370 to 500
Tensile Strength: Ultimate (UTS), MPa 240 to 260
570 to 790
Tensile Strength: Yield (Proof), MPa 170
430 to 460

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
46
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1110
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
480 to 560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 22 to 23
20 to 28
Strength to Weight: Bending, points 28 to 29
19 to 24
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 10 to 11
19 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.6 to 92.4
0
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0 to 0.35
0.4 to 0.6
Copper (Cu), % 0.4 to 1.0
0
Iron (Fe), % 0 to 1.1
95.8 to 97
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.6
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.15
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.25
0