MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. 224.0 Aluminum

Both 7175 aluminum and 224.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 3.8 to 5.9
4.0 to 10
Fatigue Strength, MPa 150 to 180
86 to 120
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 520 to 570
380 to 420
Tensile Strength: Yield (Proof), MPa 430 to 490
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 480
550
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
32
Electrical Conductivity: Equal Weight (Specific), % IACS 99
95

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
540 to 770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
45
Strength to Weight: Axial, points 48 to 52
35 to 38
Strength to Weight: Bending, points 48 to 51
38 to 41
Thermal Diffusivity, mm2/s 53
47
Thermal Shock Resistance, points 23 to 25
17 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 91.4
93 to 95.2
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
4.5 to 5.5
Iron (Fe), % 0 to 0.2
0 to 0.1
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0.2 to 0.5
Silicon (Si), % 0 to 0.15
0 to 0.060
Titanium (Ti), % 0 to 0.1
0 to 0.35
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0 to 0.15
0 to 0.1