MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. 5083 Aluminum

Both 7175 aluminum and 5083 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.8 to 5.9
1.1 to 17
Fatigue Strength, MPa 150 to 180
93 to 190
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 290 to 330
170 to 220
Tensile Strength: Ultimate (UTS), MPa 520 to 570
290 to 390
Tensile Strength: Yield (Proof), MPa 430 to 490
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 480
580
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
29
Electrical Conductivity: Equal Weight (Specific), % IACS 99
96

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
95 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 48 to 52
29 to 40
Strength to Weight: Bending, points 48 to 51
36 to 44
Thermal Diffusivity, mm2/s 53
48
Thermal Shock Resistance, points 23 to 25
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 91.4
92.4 to 95.6
Chromium (Cr), % 0.18 to 0.28
0.050 to 0.25
Copper (Cu), % 1.2 to 2.0
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.4
Magnesium (Mg), % 2.1 to 2.9
4.0 to 4.9
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Silicon (Si), % 0 to 0.15
0 to 0.4
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 5.1 to 6.1
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15