MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. EN 1.4655 Stainless Steel

7175 aluminum belongs to the aluminum alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.8 to 5.9
23 to 25
Fatigue Strength, MPa 150 to 180
320
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
78
Shear Strength, MPa 290 to 330
460
Tensile Strength: Ultimate (UTS), MPa 520 to 570
720 to 730
Tensile Strength: Yield (Proof), MPa 430 to 490
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 180
1050
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1130
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
510 to 580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 48 to 52
26
Strength to Weight: Bending, points 48 to 51
23
Thermal Diffusivity, mm2/s 53
4.0
Thermal Shock Resistance, points 23 to 25
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.28
22 to 24
Copper (Cu), % 1.2 to 2.0
1.0 to 3.0
Iron (Fe), % 0 to 0.2
63.6 to 73.4
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0