MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. Titanium 6-6-2

7175 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 3.8 to 5.9
6.7 to 9.0
Fatigue Strength, MPa 150 to 180
590 to 670
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
44
Shear Strength, MPa 290 to 330
670 to 800
Tensile Strength: Ultimate (UTS), MPa 520 to 570
1140 to 1370
Tensile Strength: Yield (Proof), MPa 430 to 490
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 480
1560
Specific Heat Capacity, J/kg-K 870
540
Thermal Conductivity, W/m-K 140
5.5
Thermal Expansion, µm/m-K 23
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
40
Density, g/cm3 3.0
4.8
Embodied Carbon, kg CO2/kg material 8.2
29
Embodied Energy, MJ/kg 150
470
Embodied Water, L/kg 1130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
89 to 99
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
34
Strength to Weight: Axial, points 48 to 52
66 to 79
Strength to Weight: Bending, points 48 to 51
50 to 57
Thermal Diffusivity, mm2/s 53
2.1
Thermal Shock Resistance, points 23 to 25
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 91.4
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0.35 to 1.0
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.1
82.8 to 87.8
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0 to 0.4