MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. C72150 Copper-nickel

7175 aluminum belongs to the aluminum alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
150
Elongation at Break, % 3.8 to 5.9
29
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
55
Shear Strength, MPa 290 to 330
320
Tensile Strength: Ultimate (UTS), MPa 520 to 570
490
Tensile Strength: Yield (Proof), MPa 430 to 490
210

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 640
1210
Melting Onset (Solidus), °C 480
1250
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 140
22
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.2
6.1
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
150
Stiffness to Weight: Axial, points 13
9.1
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 48 to 52
15
Strength to Weight: Bending, points 48 to 51
15
Thermal Diffusivity, mm2/s 53
6.0
Thermal Shock Resistance, points 23 to 25
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
52.5 to 57
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.050
Nickel (Ni), % 0
43 to 46
Silicon (Si), % 0 to 0.15
0 to 0.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.5