MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. N06255 Nickel

7175 aluminum belongs to the aluminum alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.8 to 5.9
45
Fatigue Strength, MPa 150 to 180
210
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 290 to 330
460
Tensile Strength: Ultimate (UTS), MPa 520 to 570
660
Tensile Strength: Yield (Proof), MPa 430 to 490
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 870
450
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.2
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
230
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 48 to 52
22
Strength to Weight: Bending, points 48 to 51
20
Thermal Shock Resistance, points 23 to 25
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.28
23 to 26
Copper (Cu), % 1.2 to 2.0
0 to 1.2
Iron (Fe), % 0 to 0.2
6.0 to 24
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0