MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. WE54A Magnesium

7175 aluminum belongs to the aluminum alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
44
Elongation at Break, % 3.8 to 5.9
4.3 to 5.6
Fatigue Strength, MPa 150 to 180
98 to 130
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 290 to 330
150 to 170
Tensile Strength: Ultimate (UTS), MPa 520 to 570
270 to 300
Tensile Strength: Yield (Proof), MPa 430 to 490
180

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 480
570
Specific Heat Capacity, J/kg-K 870
960
Thermal Conductivity, W/m-K 140
52
Thermal Expansion, µm/m-K 23
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
10
Electrical Conductivity: Equal Weight (Specific), % IACS 99
47

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 3.0
1.9
Embodied Carbon, kg CO2/kg material 8.2
29
Embodied Energy, MJ/kg 150
260
Embodied Water, L/kg 1130
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
62
Strength to Weight: Axial, points 48 to 52
39 to 43
Strength to Weight: Bending, points 48 to 51
49 to 51
Thermal Diffusivity, mm2/s 53
28
Thermal Shock Resistance, points 23 to 25
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 91.4
0
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
0 to 0.030
Iron (Fe), % 0 to 0.2
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 2.1 to 2.9
88.7 to 93.4
Manganese (Mn), % 0 to 0.1
0 to 0.030
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.15
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 5.1 to 6.1
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0 to 0.15
0 to 0.3