MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. EN AC-46300 Aluminum

Both 7178 aluminum and EN AC-46300 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 4.5 to 12
1.1
Fatigue Strength, MPa 120 to 210
79
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 240 to 640
200
Tensile Strength: Yield (Proof), MPa 120 to 560
110

Thermal Properties

Latent Heat of Fusion, J/g 370
490
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 480
530
Specific Heat Capacity, J/kg-K 860
880
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
27
Electrical Conductivity: Equal Weight (Specific), % IACS 91
84

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.1
2.9
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
49
Strength to Weight: Axial, points 21 to 58
20
Strength to Weight: Bending, points 28 to 54
27
Thermal Diffusivity, mm2/s 47
47
Thermal Shock Resistance, points 10 to 28
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 89.5
84 to 90
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.6 to 2.4
3.0 to 4.0
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 2.4 to 3.1
0.3 to 0.6
Manganese (Mn), % 0 to 0.3
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.4
6.5 to 8.0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 6.3 to 7.3
0 to 0.65
Residuals, % 0 to 0.15
0 to 0.55