MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. Grade Ti-Pd17 Titanium

7178 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd17 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is grade Ti-Pd17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.5 to 12
22
Fatigue Strength, MPa 120 to 210
140
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 240 to 640
270
Tensile Strength: Yield (Proof), MPa 120 to 560
190

Thermal Properties

Latent Heat of Fusion, J/g 370
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 630
1660
Melting Onset (Solidus), °C 480
1610
Specific Heat Capacity, J/kg-K 860
540
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 23
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 91
7.1

Otherwise Unclassified Properties

Density, g/cm3 3.1
4.5
Embodied Carbon, kg CO2/kg material 8.2
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1110
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
55
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
35
Strength to Weight: Axial, points 21 to 58
17
Strength to Weight: Bending, points 28 to 54
21
Thermal Diffusivity, mm2/s 47
8.8
Thermal Shock Resistance, points 10 to 28
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.6 to 2.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.2
98.9 to 99.96
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0 to 0.4