MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. S30601 Stainless Steel

7178 aluminum belongs to the aluminum alloys classification, while S30601 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is S30601 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.5 to 12
37
Fatigue Strength, MPa 120 to 210
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 140 to 380
450
Tensile Strength: Ultimate (UTS), MPa 240 to 640
660
Tensile Strength: Yield (Proof), MPa 120 to 560
300

Thermal Properties

Latent Heat of Fusion, J/g 370
370
Maximum Temperature: Mechanical, °C 180
950
Melting Completion (Liquidus), °C 630
1360
Melting Onset (Solidus), °C 480
1310
Specific Heat Capacity, J/kg-K 860
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 3.1
7.6
Embodied Carbon, kg CO2/kg material 8.2
3.9
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
24
Strength to Weight: Bending, points 28 to 54
22
Thermal Shock Resistance, points 10 to 28
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0.18 to 0.28
17 to 18
Copper (Cu), % 1.6 to 2.4
0 to 0.35
Iron (Fe), % 0 to 0.5
56.9 to 60.5
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
17 to 18
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
5.0 to 5.6
Sulfur (S), % 0
0 to 0.013
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0