MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. EN AC-45000 Aluminum

Both 7204 aluminum and EN AC-45000 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 11 to 13
1.1
Fatigue Strength, MPa 110 to 130
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 220 to 380
180
Tensile Strength: Yield (Proof), MPa 120 to 310
110

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 520
520
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
27
Electrical Conductivity: Equal Weight (Specific), % IACS 120
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.9
3.0
Embodied Carbon, kg CO2/kg material 8.4
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
80
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
47
Strength to Weight: Axial, points 21 to 36
17
Strength to Weight: Bending, points 28 to 40
24
Thermal Diffusivity, mm2/s 58
47
Thermal Shock Resistance, points 9.4 to 16
8.0

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
82.2 to 91.8
Chromium (Cr), % 0 to 0.3
0 to 0.15
Copper (Cu), % 0 to 0.2
3.0 to 5.0
Iron (Fe), % 0 to 0.35
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 1.0 to 2.0
0 to 0.55
Manganese (Mn), % 0.2 to 0.7
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.3
5.0 to 7.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
0 to 2.0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.35