MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. EN 1.4527 Stainless Steel

771.0 aluminum belongs to the aluminum alloys classification, while EN 1.4527 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is EN 1.4527 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
140
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 6.5
40
Fatigue Strength, MPa 92 to 180
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 250 to 370
480
Tensile Strength: Yield (Proof), MPa 210 to 350
190

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 620
1360
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 150
15
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
5.6
Embodied Energy, MJ/kg 150
78
Embodied Water, L/kg 1130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
150
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
95
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23 to 35
17
Strength to Weight: Bending, points 29 to 39
17
Thermal Diffusivity, mm2/s 54 to 58
4.0
Thermal Shock Resistance, points 11 to 16
12

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.060 to 0.2
19 to 22
Copper (Cu), % 0 to 0.1
3.0 to 4.0
Iron (Fe), % 0 to 0.15
37.4 to 48.5
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0