MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. EN 1.5408 Steel

771.0 aluminum belongs to the aluminum alloys classification, while EN 1.5408 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is EN 1.5408 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 250 to 370
460 to 1620

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 150
48
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1130
48

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23 to 35
16 to 57
Strength to Weight: Bending, points 29 to 39
17 to 39
Thermal Diffusivity, mm2/s 54 to 58
13
Thermal Shock Resistance, points 11 to 16
13 to 48

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 92.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.28 to 0.32
Chromium (Cr), % 0.060 to 0.2
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.15
97.7 to 98.8
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0.8 to 1.0
Molybdenum (Mo), % 0
0.080 to 0.12
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0