MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. EN 2.4816 Nickel

771.0 aluminum belongs to the aluminum alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
170
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.7 to 6.5
34
Fatigue Strength, MPa 92 to 180
200
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 250 to 370
700
Tensile Strength: Yield (Proof), MPa 210 to 350
270

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 630
1370
Melting Onset (Solidus), °C 620
1320
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140 to 150
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 82
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.0
9.0
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
190
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 23 to 35
23
Strength to Weight: Bending, points 29 to 39
21
Thermal Diffusivity, mm2/s 54 to 58
3.8
Thermal Shock Resistance, points 11 to 16
20

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0.060 to 0.2
14 to 17
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.15
6.0 to 10
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0 to 0.3
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0