MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. C83400 Brass

771.0 aluminum belongs to the aluminum alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.7 to 6.5
30
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 250 to 370
240
Tensile Strength: Yield (Proof), MPa 210 to 350
69

Thermal Properties

Latent Heat of Fusion, J/g 380
200
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 630
1040
Melting Onset (Solidus), °C 620
1020
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140 to 150
190
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
44
Electrical Conductivity: Equal Weight (Specific), % IACS 82
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
55
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 23 to 35
7.7
Strength to Weight: Bending, points 29 to 39
9.9
Thermal Diffusivity, mm2/s 54 to 58
57
Thermal Shock Resistance, points 11 to 16
8.4

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
88 to 92
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
8.0 to 12
Residuals, % 0
0 to 0.7