MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. S38815 Stainless Steel

771.0 aluminum belongs to the aluminum alloys classification, while S38815 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is S38815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.7 to 6.5
34
Fatigue Strength, MPa 92 to 180
230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 250 to 370
610
Tensile Strength: Yield (Proof), MPa 210 to 350
290

Thermal Properties

Latent Heat of Fusion, J/g 380
370
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 630
1360
Melting Onset (Solidus), °C 620
1310
Specific Heat Capacity, J/kg-K 870
500
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 3.0
7.5
Embodied Carbon, kg CO2/kg material 8.0
3.8
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1130
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
170
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 23 to 35
22
Strength to Weight: Bending, points 29 to 39
21
Thermal Shock Resistance, points 11 to 16
15

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0 to 0.3
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.060 to 0.2
13 to 15
Copper (Cu), % 0 to 0.1
0.75 to 1.5
Iron (Fe), % 0 to 0.15
56.1 to 67
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
13 to 17
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
5.5 to 6.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0