MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. 360.0 Aluminum

Both 772.0 aluminum and 360.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 6.3 to 8.4
2.5
Fatigue Strength, MPa 94 to 160
140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 260 to 320
300
Tensile Strength: Yield (Proof), MPa 220 to 250
170

Thermal Properties

Latent Heat of Fusion, J/g 380
530
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
590
Melting Onset (Solidus), °C 580
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 25 to 31
32
Strength to Weight: Bending, points 31 to 36
38
Thermal Diffusivity, mm2/s 58
55
Thermal Shock Resistance, points 11 to 14
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.2 to 93.2
85.1 to 90.6
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.15
0 to 2.0
Magnesium (Mg), % 0.6 to 0.8
0.4 to 0.6
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.15
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.25