MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. 8176 Aluminum

Both 772.0 aluminum and 8176 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is 8176 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 6.3 to 8.4
15
Fatigue Strength, MPa 94 to 160
59
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 260 to 320
160
Tensile Strength: Yield (Proof), MPa 220 to 250
95

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
660
Melting Onset (Solidus), °C 580
650
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
230
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
61
Electrical Conductivity: Equal Weight (Specific), % IACS 110
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
21
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
66
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 25 to 31
16
Strength to Weight: Bending, points 31 to 36
24
Thermal Diffusivity, mm2/s 58
93
Thermal Shock Resistance, points 11 to 14
7.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.2 to 93.2
98.6 to 99.6
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.15
0.4 to 1.0
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.15
0.030 to 0.15
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15