MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. EN 1.4646 Stainless Steel

772.0 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 6.3 to 8.4
34
Fatigue Strength, MPa 94 to 160
340
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 260 to 320
750
Tensile Strength: Yield (Proof), MPa 220 to 250
430

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 580
1340
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
220
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 25 to 31
27
Strength to Weight: Bending, points 31 to 36
24
Thermal Shock Resistance, points 11 to 14
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.2 to 93.2
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0.060 to 0.2
17 to 19
Copper (Cu), % 0 to 0.1
1.5 to 3.0
Iron (Fe), % 0 to 0.15
59 to 67.3
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0