MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. EN AC-43500 Aluminum

Both 772.0 aluminum and EN AC-43500 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 6.3 to 8.4
4.5 to 13
Fatigue Strength, MPa 94 to 160
62 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 260 to 320
220 to 300
Tensile Strength: Yield (Proof), MPa 220 to 250
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 380
550
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
600
Melting Onset (Solidus), °C 580
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
38
Electrical Conductivity: Equal Weight (Specific), % IACS 110
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
130 to 200
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 46
54
Strength to Weight: Axial, points 25 to 31
24 to 33
Strength to Weight: Bending, points 31 to 36
32 to 39
Thermal Diffusivity, mm2/s 58
60
Thermal Shock Resistance, points 11 to 14
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.2 to 93.2
86.4 to 90.5
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.15
0 to 0.25
Magnesium (Mg), % 0.6 to 0.8
0.1 to 0.6
Manganese (Mn), % 0 to 0.1
0.4 to 0.8
Silicon (Si), % 0 to 0.15
9.0 to 11.5
Titanium (Ti), % 0.1 to 0.2
0 to 0.2
Zinc (Zn), % 6.0 to 7.0
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants