MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. S20161 Stainless Steel

772.0 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 8.4
46
Fatigue Strength, MPa 94 to 160
360
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 260 to 320
980
Tensile Strength: Yield (Proof), MPa 220 to 250
390

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 580
1330
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 3.0
7.5
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1140
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
360
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 25 to 31
36
Strength to Weight: Bending, points 31 to 36
29
Thermal Diffusivity, mm2/s 58
4.0
Thermal Shock Resistance, points 11 to 14
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.2 to 93.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.060 to 0.2
15 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
65.6 to 73.9
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0