MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. 6012 Aluminum

Both 8011A aluminum and 6012 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 1.7 to 28
9.1 to 11
Fatigue Strength, MPa 33 to 76
55 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 100 to 180
220 to 320
Tensile Strength: Yield (Proof), MPa 34 to 170
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 630
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 210
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
45
Electrical Conductivity: Equal Weight (Specific), % IACS 180
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
94 to 480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
48
Strength to Weight: Axial, points 11 to 18
22 to 32
Strength to Weight: Bending, points 18 to 26
29 to 37
Thermal Diffusivity, mm2/s 86
62
Thermal Shock Resistance, points 4.6 to 8.1
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99.1
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0.5 to 1.0
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0 to 0.1
0.6 to 1.2
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Silicon (Si), % 0.4 to 0.8
0.6 to 1.4
Titanium (Ti), % 0 to 0.050
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.3
Residuals, % 0 to 0.15
0 to 0.15