MakeItFrom.com
Menu (ESC)

8021 Aluminum vs. 206.0 Aluminum

Both 8021 aluminum and 206.0 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 8021 aluminum and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 2.3
8.4 to 12
Fatigue Strength, MPa 61
88 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 160
330 to 440
Tensile Strength: Yield (Proof), MPa 130
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 640
570
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 220
120
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
33
Electrical Conductivity: Equal Weight (Specific), % IACS 180
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 130
270 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
46
Strength to Weight: Axial, points 16
30 to 40
Strength to Weight: Bending, points 23
35 to 42
Thermal Diffusivity, mm2/s 88
46
Thermal Shock Resistance, points 7.0
17 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 98 to 98.8
93.3 to 95.3
Copper (Cu), % 0 to 0.050
4.2 to 5.0
Iron (Fe), % 1.2 to 1.7
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.1
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15