MakeItFrom.com
Menu (ESC)

8021 Aluminum vs. 6110A Aluminum

Both 8021 aluminum and 6110A aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 8021 aluminum and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 2.3
11 to 18
Fatigue Strength, MPa 61
140 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 160
360 to 470
Tensile Strength: Yield (Proof), MPa 130
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 640
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 220
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
42
Electrical Conductivity: Equal Weight (Specific), % IACS 180
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.1
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 130
450 to 1300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 16
36 to 47
Strength to Weight: Bending, points 23
41 to 48
Thermal Diffusivity, mm2/s 88
65
Thermal Shock Resistance, points 7.0
16 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 98 to 98.8
94.8 to 98
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.050
0.3 to 0.8
Iron (Fe), % 1.2 to 1.7
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0
0.3 to 0.9
Silicon (Si), % 0 to 0.15
0.7 to 1.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15