MakeItFrom.com
Menu (ESC)

8079 Aluminum vs. 5086 Aluminum

Both 8079 aluminum and 5086 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 8079 aluminum and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 2.2
1.7 to 20
Fatigue Strength, MPa 56
88 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 150
270 to 390
Tensile Strength: Yield (Proof), MPa 120
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 640
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
31
Electrical Conductivity: Equal Weight (Specific), % IACS 190
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 110
86 to 770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 15
28 to 40
Strength to Weight: Bending, points 22
34 to 44
Thermal Diffusivity, mm2/s 92
52
Thermal Shock Resistance, points 6.4
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 98.1 to 99.3
93 to 96.3
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0.7 to 1.3
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0
0.2 to 0.7
Silicon (Si), % 0.050 to 0.3
0 to 0.4
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15