MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 240.0 Aluminum

Both 8090 aluminum and 240.0 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 240.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
72
Elongation at Break, % 3.5 to 13
1.0
Fatigue Strength, MPa 91 to 140
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 340 to 490
240
Tensile Strength: Yield (Proof), MPa 210 to 420
200

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 600
520
Specific Heat Capacity, J/kg-K 960
860
Thermal Conductivity, W/m-K 95 to 160
96
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
23
Electrical Conductivity: Equal Weight (Specific), % IACS 66
65

Otherwise Unclassified Properties

Base Metal Price, % relative 18
12
Density, g/cm3 2.7
3.2
Embodied Carbon, kg CO2/kg material 8.6
8.7
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
280
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
43
Strength to Weight: Axial, points 34 to 49
20
Strength to Weight: Bending, points 39 to 50
26
Thermal Diffusivity, mm2/s 36 to 60
35
Thermal Shock Resistance, points 15 to 22
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
81.7 to 86.9
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
7.0 to 9.0
Iron (Fe), % 0 to 0.3
0 to 0.5
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
5.5 to 6.5
Manganese (Mn), % 0 to 0.1
0.3 to 0.7
Nickel (Ni), % 0
0.3 to 0.7
Silicon (Si), % 0 to 0.2
0 to 0.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.15