MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 4145 Aluminum

Both 8090 aluminum and 4145 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
73
Elongation at Break, % 3.5 to 13
2.2
Fatigue Strength, MPa 91 to 140
48
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
28
Tensile Strength: Ultimate (UTS), MPa 340 to 490
120
Tensile Strength: Yield (Proof), MPa 210 to 420
68

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 660
590
Melting Onset (Solidus), °C 600
520
Specific Heat Capacity, J/kg-K 960
880
Thermal Conductivity, W/m-K 95 to 160
100
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
26
Electrical Conductivity: Equal Weight (Specific), % IACS 66
84

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.6
7.6
Embodied Energy, MJ/kg 170
140
Embodied Water, L/kg 1160
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
31
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 34 to 49
12
Strength to Weight: Bending, points 39 to 50
19
Thermal Diffusivity, mm2/s 36 to 60
42
Thermal Shock Resistance, points 15 to 22
5.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
83 to 87.4
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 1.0 to 1.6
3.3 to 4.7
Iron (Fe), % 0 to 0.3
0 to 0.8
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0 to 0.15
Manganese (Mn), % 0 to 0.1
0 to 0.15
Silicon (Si), % 0 to 0.2
9.3 to 10.7
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.15