MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 4343 Aluminum

Both 8090 aluminum and 4343 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 4343 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 3.5 to 13
4.4
Fatigue Strength, MPa 91 to 140
45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 340 to 490
110
Tensile Strength: Yield (Proof), MPa 210 to 420
62

Thermal Properties

Latent Heat of Fusion, J/g 400
510
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 95 to 160
180
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
44
Electrical Conductivity: Equal Weight (Specific), % IACS 66
150

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.6
7.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
4.1
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
27
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 34 to 49
12
Strength to Weight: Bending, points 39 to 50
20
Thermal Diffusivity, mm2/s 36 to 60
77
Thermal Shock Resistance, points 15 to 22
5.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
90.3 to 93.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0 to 0.25
Iron (Fe), % 0 to 0.3
0 to 0.8
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0 to 0.2
6.8 to 8.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.15