MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 5154A Aluminum

Both 8090 aluminum and 5154A aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 3.5 to 13
1.1 to 19
Fatigue Strength, MPa 91 to 140
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 340 to 490
230 to 370
Tensile Strength: Yield (Proof), MPa 210 to 420
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 600
600
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 95 to 160
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
32
Electrical Conductivity: Equal Weight (Specific), % IACS 66
110

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.8
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
68 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 34 to 49
24 to 38
Strength to Weight: Bending, points 39 to 50
31 to 43
Thermal Diffusivity, mm2/s 36 to 60
53
Thermal Shock Resistance, points 15 to 22
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
93.7 to 96.9
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 1.0 to 1.6
0 to 0.1
Iron (Fe), % 0 to 0.3
0 to 0.5
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
3.1 to 3.9
Manganese (Mn), % 0 to 0.1
0 to 0.5
Silicon (Si), % 0 to 0.2
0 to 0.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.15