MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 6182 Aluminum

Both 8090 aluminum and 6182 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
70
Elongation at Break, % 3.5 to 13
6.8 to 13
Fatigue Strength, MPa 91 to 140
63 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 340 to 490
230 to 320
Tensile Strength: Yield (Proof), MPa 210 to 420
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 600
600
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 95 to 160
160
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
40
Electrical Conductivity: Equal Weight (Specific), % IACS 66
130

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.4
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 34 to 49
23 to 32
Strength to Weight: Bending, points 39 to 50
30 to 38
Thermal Diffusivity, mm2/s 36 to 60
65
Thermal Shock Resistance, points 15 to 22
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
95 to 97.9
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 1.0 to 1.6
0 to 0.1
Iron (Fe), % 0 to 0.3
0 to 0.5
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0.7 to 1.2
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Silicon (Si), % 0 to 0.2
0.9 to 1.3
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0.040 to 0.16
0.050 to 0.2
Residuals, % 0 to 0.15
0 to 0.15