MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. ACI-ASTM CT15C Steel

8090 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CT15C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
23
Fatigue Strength, MPa 91 to 140
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 340 to 490
500
Tensile Strength: Yield (Proof), MPa 210 to 420
190

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1080
Melting Completion (Liquidus), °C 660
1410
Melting Onset (Solidus), °C 600
1360
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 66
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 18
36
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
6.1
Embodied Energy, MJ/kg 170
88
Embodied Water, L/kg 1160
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
90
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
93
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
17
Strength to Weight: Bending, points 39 to 50
17
Thermal Diffusivity, mm2/s 36 to 60
3.2
Thermal Shock Resistance, points 15 to 22
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
19 to 21
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
40.3 to 49.2
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.15 to 1.5
Nickel (Ni), % 0
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.15 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0