MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 1.4313 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
12 to 17
Fatigue Strength, MPa 91 to 140
340 to 510
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 340 to 490
750 to 1000
Tensile Strength: Yield (Proof), MPa 210 to 420
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
780
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 66
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.4
Embodied Energy, MJ/kg 170
34
Embodied Water, L/kg 1160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
870 to 2100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
27 to 36
Strength to Weight: Bending, points 39 to 50
23 to 28
Thermal Diffusivity, mm2/s 36 to 60
6.7
Thermal Shock Resistance, points 15 to 22
27 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
78.5 to 84.2
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0