MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. Grade 704C Zirconium

8090 aluminum belongs to the aluminum alloys classification, while grade 704C zirconium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is grade 704C zirconium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
97
Elongation at Break, % 3.5 to 13
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
36
Tensile Strength: Ultimate (UTS), MPa 340 to 490
470
Tensile Strength: Yield (Proof), MPa 210 to 420
310

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Specific Heat Capacity, J/kg-K 960
270
Thermal Conductivity, W/m-K 95 to 160
21
Thermal Expansion, µm/m-K 24
5.9

Otherwise Unclassified Properties

Density, g/cm3 2.7
6.7
Embodied Water, L/kg 1160
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
48
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
490
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 34 to 49
20
Strength to Weight: Bending, points 39 to 50
20
Thermal Diffusivity, mm2/s 36 to 60
12
Thermal Shock Resistance, points 15 to 22
58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.3
0 to 0.3
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
1.0 to 2.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
92.9 to 99
Residuals, % 0 to 0.15
0