MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. Grade Ti-Pd8A Titanium

8090 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 3.5 to 13
13
Fatigue Strength, MPa 91 to 140
260
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 340 to 490
500
Tensile Strength: Yield (Proof), MPa 210 to 420
430

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 190
320
Melting Completion (Liquidus), °C 660
1660
Melting Onset (Solidus), °C 600
1610
Specific Heat Capacity, J/kg-K 960
540
Thermal Conductivity, W/m-K 95 to 160
21
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 66
6.9

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.6
49
Embodied Energy, MJ/kg 170
840
Embodied Water, L/kg 1160
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
65
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 34 to 49
31
Strength to Weight: Bending, points 39 to 50
31
Thermal Diffusivity, mm2/s 36 to 60
8.6
Thermal Shock Resistance, points 15 to 22
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.25
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.1
98.8 to 99.9
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.4