MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. C46500 Brass

8090 aluminum belongs to the aluminum alloys classification, while C46500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 3.5 to 13
18 to 50
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 340 to 490
380 to 610
Tensile Strength: Yield (Proof), MPa 210 to 420
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 660
900
Melting Onset (Solidus), °C 600
890
Specific Heat Capacity, J/kg-K 960
380
Thermal Conductivity, W/m-K 95 to 160
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
26
Electrical Conductivity: Equal Weight (Specific), % IACS 66
29

Otherwise Unclassified Properties

Base Metal Price, % relative 18
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 170
47
Embodied Water, L/kg 1160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
170 to 1170
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 34 to 49
13 to 21
Strength to Weight: Bending, points 39 to 50
15 to 20
Thermal Diffusivity, mm2/s 36 to 60
38
Thermal Shock Resistance, points 15 to 22
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0
Arsenic (As), % 0
0.020 to 0.060
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
59 to 62
Iron (Fe), % 0 to 0.3
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
36.2 to 40.5
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.4