MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. C70250 Copper

8090 aluminum belongs to the aluminum alloys classification, while C70250 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is C70250 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
44
Tensile Strength: Ultimate (UTS), MPa 340 to 490
520 to 740

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 660
1100
Melting Onset (Solidus), °C 600
1080
Specific Heat Capacity, J/kg-K 960
390
Thermal Conductivity, W/m-K 95 to 160
170
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
36 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 66
37 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 18
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.6
2.9
Embodied Energy, MJ/kg 170
45
Embodied Water, L/kg 1160
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 34 to 49
16 to 23
Strength to Weight: Bending, points 39 to 50
16 to 21
Thermal Diffusivity, mm2/s 36 to 60
49
Thermal Shock Resistance, points 15 to 22
18 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
92.7 to 97.5
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0.050 to 0.3
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0
2.2 to 4.2
Silicon (Si), % 0 to 0.2
0.25 to 1.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.5