MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. S46500 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.5 to 13
2.3 to 14
Fatigue Strength, MPa 91 to 140
550 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 340 to 490
1260 to 1930
Tensile Strength: Yield (Proof), MPa 210 to 420
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
780
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 960
470
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 18
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
3.6
Embodied Energy, MJ/kg 170
51
Embodied Water, L/kg 1160
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
43 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
44 to 68
Strength to Weight: Bending, points 39 to 50
33 to 44
Thermal Shock Resistance, points 15 to 22
44 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
11 to 12.5
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
72.6 to 76.1
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
1.5 to 1.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0