MakeItFrom.com
Menu (ESC)

8176 Aluminum vs. AZ91C Magnesium

8176 aluminum belongs to the aluminum alloys classification, while AZ91C magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 8176 aluminum and the bottom bar is AZ91C magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
46
Elongation at Break, % 15
2.3 to 7.9
Fatigue Strength, MPa 59
56 to 85
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 70
96 to 160
Tensile Strength: Ultimate (UTS), MPa 160
170 to 270
Tensile Strength: Yield (Proof), MPa 95
83 to 130

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 650
470
Specific Heat Capacity, J/kg-K 900
990
Thermal Conductivity, W/m-K 230
73
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
9.9 to 12
Electrical Conductivity: Equal Weight (Specific), % IACS 200
52 to 60

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.2
22
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
3.2 to 16
Resilience: Unit (Modulus of Resilience), kJ/m3 66
75 to 180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
69
Strength to Weight: Axial, points 16
27 to 43
Strength to Weight: Bending, points 24
39 to 53
Thermal Diffusivity, mm2/s 93
43
Thermal Shock Resistance, points 7.0
9.9 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 98.6 to 99.6
8.1 to 9.3
Copper (Cu), % 0
0 to 0.1
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0.4 to 1.0
0
Magnesium (Mg), % 0
88.6 to 91.4
Manganese (Mn), % 0
0.13 to 0.35
Nickel (Ni), % 0
0 to 0.010
Silicon (Si), % 0.030 to 0.15
0 to 0.3
Zinc (Zn), % 0 to 0.1
0.4 to 1.0
Residuals, % 0 to 0.15
0 to 0.3