MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. 7129 Aluminum

Both 850.0 aluminum and 7129 Aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 7.9
9.0 to 9.1
Fatigue Strength, MPa 59
150 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 100
250 to 260
Tensile Strength: Ultimate (UTS), MPa 140
430
Tensile Strength: Yield (Proof), MPa 76
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 380
380
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 370
510
Specific Heat Capacity, J/kg-K 850
880
Thermal Conductivity, W/m-K 180
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 3.1
2.9
Embodied Carbon, kg CO2/kg material 8.5
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 42
1050 to 1090
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 44
47
Strength to Weight: Axial, points 12
41
Strength to Weight: Bending, points 19
43 to 44
Thermal Diffusivity, mm2/s 69
58
Thermal Shock Resistance, points 6.1
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.3 to 93.1
91 to 94
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0.7 to 1.3
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.7
0 to 0.3
Magnesium (Mg), % 0 to 0.1
1.3 to 2.0
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0.7 to 1.3
0
Silicon (Si), % 0 to 0.7
0 to 0.15
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0 to 0.3
0 to 0.15