MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. AWS ER80S-B8

850.0 aluminum belongs to the aluminum alloys classification, while AWS ER80S-B8 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is AWS ER80S-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.9
19
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 140
630
Tensile Strength: Yield (Proof), MPa 76
530

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 370
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
6.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.5
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1160
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
120
Resilience: Unit (Modulus of Resilience), kJ/m3 42
720
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 12
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 69
6.9
Thermal Shock Resistance, points 6.1
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0.7 to 1.3
0 to 0.35
Iron (Fe), % 0 to 0.7
85.6 to 90.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0.7 to 1.3
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0 to 0.5