MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. Grade 21 Titanium

850.0 aluminum belongs to the aluminum alloys classification, while grade 21 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is grade 21 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
140
Elongation at Break, % 7.9
9.0 to 17
Fatigue Strength, MPa 59
550 to 660
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
51
Shear Strength, MPa 100
550 to 790
Tensile Strength: Ultimate (UTS), MPa 140
890 to 1340
Tensile Strength: Yield (Proof), MPa 76
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 190
310
Melting Completion (Liquidus), °C 650
1740
Melting Onset (Solidus), °C 370
1690
Specific Heat Capacity, J/kg-K 850
500
Thermal Conductivity, W/m-K 180
7.5
Thermal Expansion, µm/m-K 23
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 14
60
Density, g/cm3 3.1
5.4
Embodied Carbon, kg CO2/kg material 8.5
32
Embodied Energy, MJ/kg 160
490
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
110 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 42
2760 to 5010
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 44
32
Strength to Weight: Axial, points 12
46 to 69
Strength to Weight: Bending, points 19
38 to 50
Thermal Diffusivity, mm2/s 69
2.8
Thermal Shock Resistance, points 6.1
66 to 100

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.3 to 93.1
2.5 to 3.5
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 0.7 to 1.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 0.7 to 1.3
0
Niobium (Nb), % 0
2.2 to 3.2
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.17
Silicon (Si), % 0 to 0.7
0.15 to 0.25
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
76 to 81.2
Residuals, % 0 to 0.3
0 to 0.4