MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. SAE-AISI L2 Steel

850.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI L2 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is SAE-AISI L2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 140
590 to 1960

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 370
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
44
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
2.4
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.9
Embodied Energy, MJ/kg 160
27
Embodied Water, L/kg 1160
51

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 12
21 to 70
Strength to Weight: Bending, points 19
20 to 45
Thermal Diffusivity, mm2/s 69
12
Thermal Shock Resistance, points 6.1
19 to 65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0.45 to 1.0
Chromium (Cr), % 0
0.7 to 1.2
Copper (Cu), % 0.7 to 1.3
0 to 0.25
Iron (Fe), % 0 to 0.7
95.5 to 98.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.1 to 0.9
Molybdenum (Mo), % 0
0 to 0.25
Nickel (Ni), % 0.7 to 1.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.1 to 0.3
Residuals, % 0 to 0.3
0